Part Number Hot Search : 
GC4221 SA28A 03150 MNR12 CY7C6 16LT1 BAT42 CGDPA
Product Description
Full Text Search
 

To Download AP4578GM-HF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  advanced power n and p-channel enhancement electronics corp. mode power mosfet simple drive requirement n-ch bv dss 60v lower gate charge r ds(on) 64m fast switching performance i d 4.5a rohs compliant p-ch bv dss -60v r ds(on) 125m description i d -3a absolute maximum ratings symbol parameter rating units n-channel p-channel v ds drain-source voltage 60 -60 v v gs gate-source voltage 20 20 v i d @t a =25 continuous drain current 3 4.5 -3 a i d @t a =70 continuous drain current 3 3.6 -2.4 a i dm pulsed drain current 1 20 -20 a p d @t a =25 total power dissipation 2.0 w t stg storage temperature range -55 to 150 t j operating junction temperature range -55 to 150 symbol value unit rthj-a maximum thermal resistance, junction-ambient 3 62.5 /w data and specifications subject to change without notice 200805191 parameter 1 thermal data AP4578GM-HF halogen-free product a dvanced power mosfets from apec provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. the so-8 package is widely preferred for all commercial-industrial surface mount applications and suited for low voltage applications such as dc/dc converters. s1 g1 s2 g2 d1 d1 d2 d2 so-8 g2 d2 s2 g1 d1 s1 s1 g1 s2 g2 d1 d1 d2 d2 so-8
n-ch electrical characteristics@t j =25 o c(unless otherwise specified) symbol parameter test conditions min. typ. max. units bv dss drain-source breakdown voltage v gs =0v, i d =250ua 60 - - v ?? v dss / ? t j breakdown voltage temperature coefficient reference to 25 : , i d =1ma - 0.05 - v/ : r ds(on) static drain-source on-resistance 2 v gs =10v, i d =4a - 55 64 m  v gs =4.5v, i d =2a - 65 80 m  v gs(th) gate threshold voltage v ds =v gs , i d =250ua 1 - 3 v g fs forward transconductance v ds =10v, i d =4a - 7 - s i dss drain-source leakage current v ds =60v, v gs =0v - - 1 ua drain-source leakage current (t j =70 o c) v ds =48v, v gs =0v - - 25 ua i gss gate-source leakage v gs =20v - - 100 na q g total gate charge 2 i d =4a - 9 17 nc q gs gate-source charge v ds =48v - 3 - nc q gd gate-drain ("miller") charge v gs =4.5v - 4 - nc t d(on) turn-on delay time 2 v ds =30v - 9 - ns t r rise time i d =1a - 5 - ns t d(off) turn-off delay time r g =3.3 ? v gs =10v - 22 - ns t f fall time r d =30  -7- ns c iss input capacitance v gs =0v - 730 1170 pf c oss output capacitance v ds =25v - 80 - pf c rss reverse transfer capacitance f=1.0mhz - 60 - pf r g gate resistance f=1.0mhz - 1.8 2.7  source-drain diode symbol parameter test conditions min. typ. max. units v sd forward on voltage 2 i s =1.7a, v gs =0v - - 1.2 v t rr reverse recovery time i s =4a, v gs =0v - 28 - ns q rr reverse recovery charge di/dt=100a/s - 39 - nc 2 AP4578GM-HF
AP4578GM-HF p-ch electrical characteristics@t j =25 o c(unless otherwise specified) symbol parameter test conditions min. typ. max. units bv dss drain-source breakdown voltage v gs =0v, i d =-250ua -60 - - v ?? v dss / ? t j breakdown voltage temperature coefficient reference to 25 : ,i d =-1ma - -0.04 - v/ : r ds(on) static drain-source on-resistance 2 v gs =-10v, i d =-3a - 100 125 m  v gs =-4.5v, i d =-2a - 120 150 m  v gs(th) gate threshold voltage v ds =v gs , i d =-250ua -1 - -3 v g fs forward transconductance v ds =-10v, i d =-2a - 5 - s i dss drain-source leakage current v ds =-60v, v gs =0v - - -1 ua drain-source leakage current (t j =70 o c) v ds =-48v, v gs =0v - - -25 ua i gss gate-source leakage v gs =20v - - 100 na q g total gate charge 2 i d =-3a - 12 20 nc q gs gate-source charge v ds =-48v - 2 - nc q gd gate-drain ("miller") charge v gs =-4.5v - 6 - nc t d(on) turn-on delay time 2 v ds =-30v - 10 - ns t r rise time i d =-1a - 6 - ns t d(off) turn-off delay time r g =3.3  ,v gs =-10v - 33 - ns t f fall time r d =30  -6- ns c iss input capacitance v gs =0v - 905 1450 pf c oss output capacitance v ds =-25v - 90 - pf c rss reverse transfer capacitance f=1.0mhz - 75 - pf r g gate resistance f=1.0mhz - 12 18  source-drain diode symbol parameter test conditions min. typ. max. units v sd forward on voltage 2 i s =-1.7a, v gs =0v - - -1.2 v t rr reverse recovery time i s =-3a, v gs =0v - 36 - ns q rr reverse recovery charge di/dt=-100a/s - 55 - nc notes: 1.pulse width limited by max. junction temperature. 2.pulse test 3.surface mounted on 1 in 2 copper pad of fr4 board ; 135 : /w when mounted on min. copper pad. this product is sensitive to electrostatic discharge, please handle with caution. use of this product as a critical component in life support or other similar systems is not authorized. apec does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. apec reserves the right to make changes without further notice to any products herein to improve reliability, function or design. 3
n-channel fig 1. typical output characteristics fig 2. typical output characteristics ?  fig 3. on-resistance v.s. gate voltage fig 4. normalized on-resistance v.s. junction temperature fig 5. forward characteristic of fig 6. gate threshold voltage v.s. reverse diode junction temperature 4 AP4578GM-HF 0 5 10 15 20 25 012345 v ds , drain-to-source voltage (v) i d , drain current (a) t a =25 o c 10v 7.0v 5.0v 4.5v v g =3.0v 0 5 10 15 20 25 012345 v ds , drain-to-source voltage (v) i d , drain current (a) t a =150 o c 10v 7.0v 5.0v 4.5v v g =3.0v 50 55 60 65 70 75 246810 v gs , gate-to-source voltage (v) r ds(on) (m  ) i d =2a t a =25 o c 0.6 0.8 1.0 1.2 1.4 1.6 -50 0 50 100 150 t j , junction temperature ( o c) normalized r ds(on) i d =4a v g =10v 0 1 2 3 4 0 0.2 0.4 0.6 0.8 1 1.2 v sd , source-to-drain voltage (v) i s (a) t j =25 o c t j =150 o c 0 0.5 1 1.5 2 -50 0 50 100 150 t j ,junction temperature ( o c) normalized v gs(th) (v)
a p4578gm-hf n-channel fig 7. gate charge characteristics fig 8. typical capacitance characteristics fig 9. maximum safe operating area fig 10. effective transient thermal impedance fig 11. transfer characteristics fig 12. gate charge waveform 5 q v g 4.5v q gs q gd q g charge 0 2 4 6 8 10 12 0 4 8 12 16 20 q g , total gate charge (nc) v gs , gate to source voltage (v) i d =4a v ds =48v 10 100 1000 1 5 9 1317212529 v ds , drain-to-source voltage (v) c (pf) f =1.0mhz c iss c oss c rss 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 10 100 1000 t , pulse width (s) normalized thermal response (r thja ) 0.01 0.05 0.1 0.2 duty factor=0.5 single pulse p dm duty factor = t/t peak t j = p dm x r thja + t a r thja = 135 : /w t t 0.02 0.01 0.1 1 10 100 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) i d (a) t a =25 o c single pulse 100us 1ms 10ms 100ms 1s dc 0 5 10 15 20 25 02468 v gs , gate-to-source voltage (v) i d , drain current (a) t j =125 o c t j =25 o c v ds =5v
p-channel fig 1. typical output characteristics fig 2. typical output characteristics fig 3. on-resistance v.s. gate voltage fig 4. normalized on-resistance v.s. junction temperature fig 5. forward characteristic of fig 6. gate threshold voltage v.s. reverse diode junction temperature 6 AP4578GM-HF 0 5 10 15 20 01234567 -v ds , drain-to-source voltage (v) -i d , drain current (a) t a =25 o c -10v -7.0v -5.0v -4.5v v g = - 3.0v 0 5 10 15 20 01234567 -v ds , drain-to-source voltage (v) -i d , drain current (a) t a =150 o c -10v -7.0v -5.0v -4.5v v g = - 3.0v 130 140 150 160 170 246810 -v gs , gate-to-source voltage (v) r ds(on) (m  ) i d =-2a t a =25 o c 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 0 50 100 150 t j , junction temperature ( o c) normalized r ds(on) i d =-3a v g = - 10v 0 1 2 3 0 0.2 0.4 0.6 0.8 1 1.2 -v sd , source-to-drain voltage (v) -i s (a) t j =25 o c t j =150 o c 0 0.5 1 1.5 2 -50 0 50 100 150 t j , junction temperature ( o c) normalized -v gs(th) (v)
a p4578gm-hf p-channel fig 7. gate charge characteristics fig 8. typical capacitance characteristics fig 9. maximum safe operating area fig 10. effective transient thermal impedance fig 11. transfer characteristics fig 12. gate charge waveform 7 q v g -4.5v q gs q gd q g charge 0 2 4 6 8 10 12 0.0 5.0 10.0 15.0 20.0 25.0 q g , total gate charge (nc) -v gs , gate to source voltage (v) i d =-3a v ds =-48v 10 100 1000 10000 1 5 9 13 17 21 25 29 -v ds , drain-to-source voltage (v) c (pf) f =1.0mh z c iss c oss c rss 0.01 0.1 1 10 100 0.1 1 10 100 1000 -v ds , drain-to-source voltage (v) -i d (a) t a =25 o c single pulse 100us 1ms 10ms 100ms 1s dc 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 10 100 1000 t , pulse width (s) normalized thermal response (r thja ) p dm duty factor = t/t peak t j = p dm x r thja + t a r thja = 135 : /w t t 0.02 0.01 0.05 0.1 0.2 duty factor=0.5 single pulse 0 5 10 15 20 02468 -v gs , gate-to-source voltage (v) -i d , drain current (a) t j =150 o c t j =25 o c v ds =-5v
package outline : so-8 millimeters symbols min nom max a 1.35 1.55 1.75 a1 0.10 0.18 0.25 b 0.33 0.41 0.51 c 0.19 0.22 0.25 d 4.80 4.90 5.00 e1 3.80 3.90 4.00 e 5.80 6.15 6.50 l 0.38 0.71 1.27 0.00 4.00 8.00 e 1.all dimension are in millimeters. 2.dimension does not include mold protrusions. part marking information & packing : so-8 1.27 typ advanced power electronics corp. c detail a a1 a 4578 g m ywwsss package code part numbe r detail a l date code (ywwsss) y last digit of the year ww week sss sequence if last "s" is numerical letter : rohs product if last "s" is en g lish letter : hf & roh s e b 1 34 5 6 7 8 2 d e1 e meet rohs requirement for low voltage mosfet only 8


▲Up To Search▲   

 
Price & Availability of AP4578GM-HF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X